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Jacobian-free Newton-Krylov (JFNK) algorithms are a potentially powerful class of methods for
solving the problem of coupling codes that address different physics models. As communication ca-
pability between individual submodules varies, different choices of coupling algorithms are required.
The more communication that is available, the more possible it becomes to exploit the simple spar-
sity pattern of the Jacobian, albeit of a large system. The less communication that is available,
the more dense the Jacobian matrices become and new types of preconditioners must be sought to
efficiently take large time steps. In general, methods that use constrained or reduced subsystems
can offer a compromise in complexity. The specific problem of coupling a fluid plasma code to a
kinetic neutrals code is discussed as an example.
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I. THE CODE COUPLING PROBLEM

Complex multiscale physics problems are being attacked at the forefront of computational science. Often, there
are highly efficient specialized algorithms for treating a piece of the problem rather efficiently which have been
implemented into sophisticated numerical tools. However, when treating the coupled problem, the efficiency is lost
due to fast timescales in the coupling terms and their interaction with fast internal timescales. When long time scale
solutions are sought, e.g. near equilibrium, the coupling becomes prohibitive. Moreover, the problems of interest
are typically nonlinear and may possess multiple solution branches. If an accurate solution is required on fast time
scales, then these fast time scales must be resolved. If only the longer time scale solutions are sought, then an effective
means to treat this coupling problem is to use a nonlinear solver. The more computationally expensive each call to the
individual codes are and the more time-consuming it is to exchange information between codes, the more important
it becomes to use a highly efficient nonlinear solver that is scalable to large problem sizes.

Jacobian-free Newton-Krylov solvers [1, 2] are a powerful class of efficient scalable solvers that may be optimal
for these scenarios. In the next section, we consider the way in which communication between the nonlinear solver
and the individual codes affects the solution algorithm. The communication level varies between “transparent” where
the entire system is treated as a whole and the subalgorithms are only used to evaluate equations, to “opaque”
where the subalgorithms can only be used to provide the solution for fixed right hand side. For practical purposes, a
compromise is likely to be required. When one subalgorithm dominates the other in complexity, it may be necessary
to use the “semi-transparent” subalgorithms defined below which attempt to constrain part of the solution. This has
the disadvantage of introducing more complex couplings between subalgorithms.

In Section III, we consider the specific problem of coupling a fluid plasma code [4–6] to a kinetic neutrals code [3].
Today, Monte-Carlo (MC) solvers for the kinetic neutrals problem [7, 8] are more widely used. One of the important
issues introduced by the MC approach is statistical noise. If the equation evaluations and Jacobian calculations are
subject to noise, they will become ineffective at generating useful results unless statistical uncertainty is sufficiently
reduced. Determination of the optimal trade-off between time-step and noise is a complex research subject of its own
and is beyond the scope of the following considerations. The final sections summarizes the conclusions.

II. CODE COUPLING ALGORITHMS

A. JFNK

If it is possible to invest in an overarching nonlinear solver, then Jacobian-free Newton-Krylov solvers [1, 2] are a
powerful class of efficient scalable solvers. Let the n unknowns be u = {uk} and the nonlinear equations to be solved
N k(u) = 0 define the global system. The Newton root finding strategy solves the equations N (u) = 0 via iteration
for a sequence {u(j)} that converges to the solution. The Newton iteration is

−J(j) ·∆u(j+1) = N(j) ≡ N (u(j)). (1)

It is clear that if the solution converges to LHS = 0, then the equations have been solved RHS = 0. The Jacobian
is evaluated, e.g. from the Taylor series, via

(J(j))
k
i ≡ ∂uiN k

(j)

∣∣∣
u(j)

'
(
N (u + εêi)−N (u)

)
/ε (2)

where êi is the ith direction vector and the RHS is a numerical approximation which holds in the limit ε→ 0.
The Krylov algorithm allows one to never explicitly form the Jacobian, but only to iteratively evaluate products of

the Jacobian and a trial solution. Given initial guess u0, the vector J · u0 = 0, the solution is sought in the subspace
Mm = span{⊕m

j=0J
ju0}. If the number of Krylov iterations m = n, then the method is equivalent to direct inversion.

In order for iteration to converge in faster than n iterations, it is necessary to find a good preconditioner for the
Jacobian. Thus, the key to this method is the determination of an appropriate preconditioner for the problem at
hand.

B. Transparent Coupling: Full JFNK

The “transparent coupling problem” is defined by transparency of communication between subalgorithms: (i) all
u data are accessible and (ii) all equation results N (u) can be evaluated and passed to the solver. The codes are
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only called to initialize the problem and to provide right hand sides. This is likely to be the most computationally
efficient and flexible solution strategy because the solver has direct control over all variables. Any reductions that
are performed can be designed to act as an efficient preconditioning strategy. The otherwise arbitrary splitting of
variables between subalgorithms can complicate the couplings and interaction terms in unforseen ways.

This approach is equivalent to treating the subsystems as part of a whole. However, this approach may be quite
demanding in terms of the human time needed to address the problem in this manner. Also, the division into
subalgorithms is often based on a good understanding of the processes to be modeled, and if properly interpreted,
may already be quite close to a desirable preconditioning for the coupled problem for a large fraction of the domain.

C. Semi-Transparent Coupling: Constrained JFNK

Assume now that data and equation results from one of the codes A is accessible (system A, subscript A), but that
is too difficult to access necessary information from the other code D (system D, subscript D). The total system
is divided into nA variables uA and nD variables uD. If couplings are neglected, the nonlinear equations for each
subalgorithm are NA(uA) = 0 and ND(uD) = 0. When couplings are included, the equations become

NA(uA) +NB(uA,uD) = 0 (3)

ND(uD) +NC(uA,uD) = 0. (4)

The Jacobian is then split into four subblocks

J =

[
A B
C D

]
(5)

where

A = ∂A(NA +NB) (6)

B = ∂DNB (7)

C = ∂ANC (8)

D = ∂D(NC +ND). (9)

Assume that subalgorithm D can provide the solution to Eq. 4 for any fixed uA. Then, these equations can be
interpreted as constraints uD(uA) and JFNK can be implemented on

NA(uA) +NB(uA,uD(uA)) = 0. (10)

It is clear that (i) computing these equations is at least as expensive as solving for uD(uA) and (ii) the Jacobian for
Eq. 3 alone will be more dense due to the new interaction terms:

J|D = Â = A−BD−1C. (11)

Thus, the preconditioner for the constrained system A/D must now address the dynamics of both subsystems.

D. Semi-Transparent Coupling: Reduced JFNK

Now assume that the coupling terms NB only depend on a small subset of system D, called E with variables uE , so
that NB(uA,uE). In general, the coupling between E and D/E is strong so that it is not possible to solve only A+ E
system. However, it may be possible to modify subalgorithm D to a new version F in order to give the JFNK solver
explicit control over the state of E . In other words, we assume that the equations ND +NC can be subdivided into
equation sets ND′ +NC′ and NF . The modified algorithm F solves the constraints

NF (uF ,uE ,uA) = 0 (12)

for any uE ,uA. It is clear that the Jacobian H = ∂ENE must be non-degenerate for a solution to be determined.
Then, the system of equations that will be solved via JFNK is

NA(uA) +NB(uA,uE) = 0 (13)

NE(uE ,uF (uE)) +NC′(uE ,uF (uE),uA) = 0. (14)
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While the equations are likely to be as expensive to compute as the previous formulation, the advantage of this
formulation is that it may be possible to converge in fewer iterations if an efficient preconditioner is found.

The Jacobian of the full system now has the form

J =

 A B 0
C′ D′ E
F G H

 (15)

where A,B are still defined by Eq. 6-7 and

C′ = ∂A(ND′ +NC′) (16)

D′ = ∂E(ND′ +NC′) (17)

E = ∂F (ND′ +NC′) (18)

F = ∂ANF (19)

G = ∂ENF (20)

H = ∂FNF . (21)

The Jacobian of the reduced system has the form

J|F =

[
A B

Ĉ′ D̂′

]
(22)

where

Ĉ = C′ −EH−1F (23)

D̂ = D′ −EH−1G. (24)

Thus, the A,B components for A − E coupling retain the same sparsity pattern as for the full JFNK solve. The
complexity that must be addressed is the more complicated Jacobian in the Ĉ and D̂ sectors due to E − F coupling.
While this may still be challenging to solve, the assumption of the reduced formulation is that E − F coupling is a
much easier to address than full A−D coupling in Eq. 11.

E. Opaque Coupling: Newton Iteration

Now we assume that the internal results can not be accessed from either code, but that solutions to each set of
Eqs. 3 (4) can be found for fixed values of uD (uA) respectively. We would still like to perform the Newton iteration
Jδu = −N , but the lack of communication strictly enforces the block-structure of the Jacobian. The exact inverse of
the block matrix in Eq. 5 is

J−1 =

[
Â−1 −A−1BD̂−1

−D−1CÂ−1 D̂−1

]
(25)

where

Â = A−BD−1C (26)

D̂ = D−CA−1B. (27)

Thus, if the inverses of the submatrices above can be determined, a full Newton step can still be taken. It is clear
that in this case, the inverses of Â, D̂ can only be determined by iteration between subalgorithms A, D. This solution
must be performed 4 times for each iteration: 2 for Â and 2 for D̂. In order to reduce the number of iterations, which
are presumably costly, it is best if the algorithms can be modified to a form A′, D′ that includes a preconditioner for
the other equation set so that it is possible to easily evaluate a modified Jacobian Â0 ' Â, D̂0 ' D̂. Then the exact
inverse

Â−1 · uA =

m∑
j=0

(1− Â−1
0 Â)jÂ−1

0 · uA (28)
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can be determined by relatively few iterations between codes.
Let us describe this process in more detail. In practice, the Jacobian terms are found by numerical differentiation,

e.g. A is defined via a numerical approximation of ∂ANA. Thus, the equation Ax = r is actually

NA(u(j) + εx)−NA(u(j)) = εr. (29)

If the equations NA(x) = r are solvable by algorithm A, then, Eq. 29 can be solved as well. The evaluation of the
interaction term x = BD−1Cr at step u(j) is performed via the following algorithm: (i) using D evaluate x1

x1 ≡ (NC +ND)|u(j)+εr
u(j)

(30)

(ii) and solve for x2

ND(u(j) + εx2)−ND(u(j)) = x1. (31)

(iii) Then, using A evaluate the full step x

x = NB(u(j) + εx2)−NB(u(j)). (32)

In order to form a nonlinear preconditioner for iteration, we assume that the equation set can be modified to the
form N = N0 +N1, where (i) N0 can be solved with minor modifications of the original algorithms A,D and where

Â0 = ∂AN0 and D̂0 = ∂DN0 represent efficient approximations to Â, D̂ respectively. In this case, the solution to
Â0x = r is performed by using A′ to solve E0(u(j) + εx) = εr + E0(u(j)).

III. EXAMPLE: COUPLING FLUID PLASMA EQUATIONS TO KINETIC NEUTRAL EQUATIONS

A. Implicit Time Integration

Here we consider the example of coupling a magnetized plasma fluid model [4–6] to a kinetic neutral physics model
[3, 7, 8]. Since Monte-Carlo (MC) approaches are often applied to the kinetic neutral problem, the data and equations
are often not in a form that is easily accessible to the nonlinear solver, so that the coupling problem is, at best,
semi-transparent. The MC code solves the kinetic equation by following a large number of Lagrangian grid points in
time. In all cases, this data must be remapped to the grid of interest to the plasma solver.

The equations are assumed to be presentable as a first order in time partial-differential system

N = ∂tu + F(u) = 0 (33)

as well as possible constraint equations ∆(u,u∆) that are relatively easy to solve, so that they need not be considered
further. The goal is to solve these equations implicitly in time. For example, the implicit midpoint rule yields

N (u(i+1)) = ∆u(i+1/2) + ∆tF(ū(i+1/2)) = 0 (34)

where

∆u(i+1/2) ≡ u(i+1) − u(i) (35)

ū(i+1/2) ≡ (u(i+1) + u(i))/2 (36)

for each time step. It is clear that reducing the time step sufficiently causes the first term to become dominant, at
which point the system can be solved by explicit iteration. The goal of taking a large time step requires efficient
methods for solving the full nonlinear set of Eq. 34. Each iteration j of the JFNK solver generates an approximate
iterative solution u(i+1,j) converging toward u(i+1).

The choice of preconditioner is clearly important. In fact, some of the previously discussed algorithms require
efficient preconditioners for both sides of the problem; i.e. for both the plasma and the neutral equations. An
example of a potentially useful preconditioner for the plasma side is to solve the plasma equations using a fluid
neutrals model. Of course, even simpler models (enhanced plasma diffusion?) are preferable if they are found to work
efficiently. This implies that the solution strategy for Eq. 34 is to: (i) solve the fluid neutrals-fluid plasma problem as
an initial guess for each time step and (2) use the fluid neutrals-fluid plasma approximation for the Jacobian where
needed in the various algorithms to follow.
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B. Transparent

If the neutral kinetic equation is solved in a manner that is conducive to transparent coupling, then the best JFNK
approach is likely to be solving the full plasma-neutral problem. Although the system has high dimensionality, the
equations have a known sparsity pattern that can potentially be exploited. To the extent that the individual plasma
and neutrals solver already contain implicit nonlinear solvers, good preconditioners may already be known for each
part of the problem.

The neutral kinetic equation for uD = f is of the form

ND +NC = ∂tf +∇ · ~vf +∇v · ~Ff − C[f,uA]− S[f,uA] (37)

where C is the collision operator, S is the ionization/recombination source and F represent any forces on neutrals.
The evaluation of the kinetic equation must be defined over time span ∆t. The JFNK solver determines iteration
f(i+1,j) given value f(i). The MC code must be used to find ∂tf(i+1,j). For long times, the value of the kinetic equation
is best defined via

NC +ND =

(
f(i+1,j) − f(i) −

∫ ∆t

0

dt∂tf(i+1,j)

)
/∆t. (38)

The partial derivates needed for the Jacobian of the kinetic equation can be almost completely determined analytically.
Only the evaluation of non-constant terms in the Jacobian, which arise from nonlinear terms in the kinetic equation,
must be performed by insertion of the numerical solution for f(i+1,j−1).

The electrostatic quasi-neutral plasma fluid equations NA + NB for variables uA = {Ni, Vi, Ti, Ve, Te, φ,$} are
given by the fluid moment equations. For example, for ions

∂tNi +∇ ·NiVi = Si,0(uA, f) (39)

∂tNiVi +∇ · (NiViVi + Pi) = Ri,1(uA, f) + Si,1(uA, f) (40)

∂t
3
2Pi +∇ · ( 3

2PiVi +Qi) + Pi∇ · Vi = Ri,2(uA, f) + Si,2(uA, f). (41)

where R represents collisional friction and S represents ionization and recombination sources. A similar equation set
holds for electrons, along with the constraint Ne =

∑
i ZiNi and the “vorticity” equation for the potential which is

defined via the current continuity equation ∇ · J = 0. In these equations, the velocity perpendicular to the magnetic
field B is defined to lowest order by the drift motion for each species defined by the balance between the Lorentz force
0 = Fi +ZieVi ×B; the drift flow is Vi,⊥ = Fi × b/ZieB and, for the electric field one defines VE = E× b/B. The
sum of the force balance equations allows one to solve for the perpendicular current J⊥ =

∑
i b×FiNi/B+ . . . . The

divergence of the current is formally one order higher, requiring that inertia be retained for the charge conservation
equation. The continuity equation is therefore

∂t$ +∇ ·VE$ = ∇ ·
∑
i

Fi × b/B +∇ · J‖b +∇2
⊥µ$ (42)

where

$ = ∇⊥ ·

[∑
i

ZieNiρ
2
i

(
T−1
i ∇⊥Zieφ+ p−1

i ∇⊥pi
)]

(43)

ρ2
i = MiTi/(ZieB)2. (44)

C. Semi-Transparent: Constrained

If the plasma data is accessible (system A), but the neutrals are too difficult to access (system D), then the problem
is semi-transparent. The kinetic neutral equation can be handled as a constraint, which means solving the kinetic
equations

ND(f̄(i,j)) +NC(f̄(i,j),uA,(i,j)) = 0 (45)

for every JFNK subiteration (with index j) for each time step (with subindex i) that is required. It is clear that,
for large time steps, this is expensive and that it will induce a dense Jacobian factor into the plasma equations. The
largest time-step that can be taken will be determined by the ability to find a good preconditioner for the plasma
system

NA(uA,(i+1,j)) +NB(f(i,j),uA,(i,j)) = 0. (46)
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D. Semi-Transparent: Reduced

In order to generate a system with a simpler sparsity pattern, let us define the subsystem of fluid neutral variables
uE = {Nn, Vn, Tn . . . } and moment equations (as in Eq. 39-41) which have the structure

ND′(uE) +NC′(uE ,uA) = ∂tuE + FE(uE) +NC′(uE ,uA). (47)

The JFNK solver will now have access to plasma and neutral fluid equations.
How shall the neutral distribution function be defined for a given set of moments? We require two novel uses of

the kinetic equation: (i) we must evaluate the kinetic equation for a specified set of fluid moments and (ii) we must
compute the Jacobian with respect to the moments for a given f . To partially constrain the system, we define the
local Maxwellian

fM = exp (−m(v − V )2/2T 2)/(2πT )3/2 (48)

and the moments defined by the nonlinear constraints

N =

∫
fd3v (49)

NV =

∫
vfd3v (50)

NT =

∫
v2fd3v/3. (51)

and so on.
The collection of moments is given by the nE coordinates uE and the auxilliary constraints are defined by the

solution for the variables uF ≡ δf = f − f0, where f0 has been determined by the moment equations. Standard
choices of orthogonal polynomial representations can be used for f0, where

f0 = fM

nE−1∑
k=0

ak(x, t)Pk((v − V )/vT ) (52)

vT =
√
T/m, the Pk(x) are a set of orthonormal polynomials (a0 = N), and the coefficients are related to moments

of the distribution. The distribution f0 acts as a source that depends solely on the fluid moments (uE) and acts as a
driver for the nonlinear constraint equation

NF [δf,uA] = −df0/dt. (53)

The solution to this equation must satisfy the auxilliary constraints δN = δNU = δNT = 0. This is precisely true
when the moments satisfy the moment equations leaving only the remainder

df0/dt = ∂tf0 +∇ · vδf0 +∇v · Ff0 (54)

=

nE∑
k=0

[
fMak

∫
Pk(C + S)d3v + fMv · ∇akPk + akF · ∇vPkfM

]
. (55)

Thus, the sources are defined so as to generate no source correponding to each orthogonal basis function in the moment
expansion. In practice, an MC approach may need specialized techniques to eliminate changes to the moments induced
by noise.

The Jacobian can be performed by a combination of analytic and numerical differentiation. The result is the
linearized moment equations. For example, particle conservation is expressed as

∂tδN + ∂x(V δN +NδV ) =
∑

G=A,E

δuG

[∫
d3v(∂S/∂uG) +

∫
d3v(∂S/∂δf)(∂δf/∂uG)

]
. (56)

The other moment equations have a similar form, where, now collisional terms are also introduced. Only the source
terms need to be computed numerically. In principle, the partial derivative of the first source term, or at least the
majority of its dependence on the fluid moments, can also be computed analytically. Since these term may depend
on δf , it will ultimately require the numerical result for evaluation, but not for differentiation.
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E. Opaque

If the system is treated as if it were completely opaque, then the approach to iteration will rely on the ability
to solve the neutral kinetic equation efficiently for long time steps. As discussed in the previous sections, a neutral
fluid model can be used as the preconditioner need to invert the plasma coupling equations: Â0 = A − BD′−1C′.
It is also prudent to identify an inexpensive model for plasma response A0 for use in the neutral kinetic equation
inversion: D̂0 = D−CA−1

0 B. This term generates anisotropy in the neutral kinetic equation due to neutral-plasma
interactions. The number of iterations can be reduced if the preconditioner is a reasonable predictor of the long-time
plasma response.

The plasma fluid equations are distinguished by high anisotropy with respect to to the magnetic field. For example,
parallel conductivities typically smooth the parallel dependence of temperature and velocity along the field lines. For
example, the response of the plasma temperature to a source is approximately determined by the Braginskii thermal
conductivity

B0∂`(κ0/B0)∂`T
5/2
A δTA = (∂Q/∂uD)δuD + . . . . (57)

The main response is then

X =

∫
{(∂Q/∂uD)δuD} d`/B0 (58)

δTA = T
−5/2
A

∫ {
XB2

0/κ0

}
d`/B0 (59)

where {X} = X − 〈X〉 and 〈X〉 =
∮
Xd`/B0 is the average along a field line. A similar result holds for the parallel

plasma velocity. The more challenging aspect to model is the plasma density response. It is often the case that the
parallel velocity dominates in the neutral-plasma interaction region, because the plasma is accelerated to a fraction
of the sound speed near the ionization front. In this case, one can solve

∂`δ(NAVA‖)/B0 = S0 (60)

δ(NAVA‖) = B0

∫
{(∂DS)δuD} d`/B0. (61)

However, the parallel velocity can vanish deep into the neutral region due to collisional friction.

IV. CONCLUSION

This article has emphasized the utility of the JFNK approach for solving the code coupling problem. Various levels
of communication capability require different choices of algorithms. The less communication that is available, the
more dense the Jacobian matrices become and new types of preconditioners must be sought to efficiently take large
time steps. The more communication that is available, the more possible it becomes to exploit the simple sparsity
pattern of the Jacobian, albeit of a larger system.
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